Spinal neuronal plasticity is evident within 1 day after a painful cervical facet joint injury.
نویسندگان
چکیده
Excessive stretch of the cervical facet capsular ligament induces persistent pain and spinal plasticity at later time points. Yet, it is not known when such spinal modifications are initiated following this painful injury. This study investigates the development of hyperalgesia and neuronal hyperexcitability in the spinal cord after a facet joint injury. Behavioral sensitivity was measured in a model of painful C6/C7 facet joint injury in the rat, and neuronal hyperexcitability in the spinal cord was evaluated at 6h and 1 day after injury or a sham procedure, in separate groups. Extracellular recordings of C6/C7 dorsal horn neuronal activity (229 neurons) were used to quantify spontaneous and evoked firing. Rats exhibited no change in sensitivity to mechanical stimulation of the forepaw at 6h, but did exhibit increased sensitivity at 1 day after injury (p=0.012). At 6h, both spontaneous neuronal activity and firing evoked by light brushing, pinch, and von Frey filaments (1.4-26g) applied at the forepaw were not different between sham and injury. At 1 day, spontaneous firing was noted in a greater number of neurons after injury than sham (p<0.04). Evoked firing was also increased 1 day after injury compared to normal and sham (p<0.03). Dorsal horn hyperexcitability and increased spontaneous firing developed between 6 and 24h after painful facet injury, suggesting that the development of hyperalgesia parallels dorsal horn hyperexcitability following mechanical facet joint injury, and these spinal mechanisms are initiated as early as 1 day after injury.
منابع مشابه
Gabapentin alleviates facet-mediated pain in the rat through reduced neuronal hyperexcitability and astrocytic activation in the spinal cord.
UNLABELLED Although joint pain is common, its mechanisms remain undefined, with little known about the spinal neuronal responses that contribute to this type of pain. Afferent activity and sustained spinal neuronal hyperexcitability correlate to facet joint loading and the extent of behavioral sensitivity induced after painful facet injury, suggesting that spinal neuronal plasticity is induced ...
متن کاملNeuronal hyperexcitability in the dorsal horn after painful facet joint injury.
Excessive cervical facet capsular ligament stretch has been implicated as a cause of whiplash-associated disorders following rear-end impacts, but the pathophysiological mechanisms that produce chronic pain in these cases remain unclear. Using a rat model of C6-C7 cervical facet joint capsule stretch that produces sustained mechanical hyperalgesia, the presence of neuronal hyperexcitability was...
متن کاملBrain-derived neurotrophic factor is upregulated in the cervical dorsal root ganglia and spinal cord and contributes to the maintenance of pain from facet joint injury in the rat.
The facet joint is commonly associated with neck and low back pain and is susceptible to loading-induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading-induced pain remain unknown. Altered brain-derived neurotrophic factor (BDNF) levels are associated with a host of painful condit...
متن کاملEarly afferent activity from the facet joint after painful trauma to its capsule potentiates neuronal excitability and glutamate signaling in the spinal cord.
Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship among facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. This study investigates how a...
متن کاملWhiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity.
The cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transport...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 542 شماره
صفحات -
تاریخ انتشار 2013